Forecasting next-day price of electricity in the Spanish energy market using artificial neural networks
نویسندگان
چکیده
In this paper, next-day hourly forecasts are calculated for the energy price in the electricity production market of Spain. The methodology used to achieve these forecasts is based on artificial neural networks, which have been used successfully in recent years in many forecasting applications. The days to be forecast include working days as well as weekends and holidays, due to the fact that energy price has different behaviours depending on the kind of day to be forecast. Besides, energy price time series are usually composed of too many data, which could be a problem if we are looking for a short period of time to reach an adequate forecast. In this paper, a training method for artificial neural nets is proposed, which is based on making a previous selection for the multilayer perceptron (MLP) training samples, using an ART-type neural network. The MLP is then trained and finally used to calculate forecasts. These forecasts are compared to those obtained from the well-known Box–Jenkins ARIMA forecasting method. Results show that neural nets perform better than ARIMA models, especially for weekends and holidays. Both methodologies calculate more accurate forecasts—in terms of mean absolute percentage error—for working days that for weekends and holidays. Agents involved in the electricity production market, who may need fast forecasts for the price of electricity, would benefit from the results of this study. r 2007 Elsevier Ltd. All rights reserved.
منابع مشابه
Application of an Improved Neural Network Using Cuckoo Search Algorithm in Short-Term Electricity Price Forecasting under Competitive Power Markets
Accurate and effective electricity price forecasting is critical to market participants in order to make an appropriate risk management in competitive electricity markets. Market participants rely on price forecasts to decide on their bidding strategies, allocate assets and plan facility investments. However, due to its time variant behavior and non-linear and non-stationary nature, electricity...
متن کاملApplication of a New Hybrid Method for Day-Ahead Energy Price Forecasting in Iranian Electricity Market
Abstract- In a typical competitive electricity market, a large number of short-term and long-term contracts are set on basis of energy price by an Independent System Operator (ISO). Under such circumstances, accurate electricity price forecasting can play a significant role in improving the more reasonable bidding strategies adopted by the electricity market participants. So, they cannot only r...
متن کاملIntroduce an Optimal Pricing Strategy Using the Parameter of "Contingency Analysis" Neplan Software in the Power MarketCase Study (Azerbaijan Electricity Network)
Overall price optimization strategy in the deregulated electricity market is one of the most important challenges for the participants, In this paper, we used Contingency Analysis Module of NEPLAN Software, a strategy of pricing to market participants is depicted.Each of power plants according to their size and share of the Contingency Analysis should be considered in the price of its hour. In ...
متن کاملDay-ahead Price Forecasting of Electricity Markets by a New Hybrid Forecast Method
Energy price forecast is the key information for generating companies to prepare their bids in the electricity markets. However, this forecasting problem is complex due to nonlinear, non-stationary, and time variant behavior of electricity price time series. Accordingly, in this paper a new strategy is proposed for electricity price forecast. The forecast strategy includes Wavelet Transform (WT...
متن کاملA New Iterative Neural Based Method to Spot Price Forecasting
Electricity price predictions have become a major discussion on competitive market under deregulated power system. But, the exclusive characteristics of electricity price such as non-linearity, non-stationary and time-varying volatility structure present several challenges for this task. In this paper, a new forecast strategy based on the iterative neural network is proposed for Day-ahead price...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Eng. Appl. of AI
دوره 21 شماره
صفحات -
تاریخ انتشار 2008